Volume 2
- Number 2 (2009)
Volume 3
- Number 1 (2010)
- Number 2 (2010)
Volume 4
- Number 1 (2011)
- Number 2 (2011)
Volume 5
- Number 1 (2012)
- Number 2 (2012)
Volume 6
- 2013
Volume 7
Volume 8
- Number 1 (2015)
- Number 2 (2015)

CALL FOR PAPERS YEAR 2017

IMPORTANT DATES:
Submission Due Date: May 12, 2017
Notification to Authors: May 31, 2017
Journal Publication: July 15, 2017 onwards


EDITORIAL BOARD

Journal of Engineering & Technological Advances
Chief Editor:
Dr. Chia Chee Ming
Deputy Chief Editor:
Dr. Leelavathi Rajamanickam
Editors:
Prof. Omar Munir
Dr. Yap Pow Seng
Pn. Salmaliza Salleh
Mr. Chen Woon Choong
Ms. Kate Lam Woon Yee
 
Asia Pacific Journal of Health Sciences Research
Chief Editor:
Dr Neeraj Malhotra
Deputy Chief Editor:
Prof. Dr. Jamaludin Zainol
Editors:
Datuk Dr Khairiyah Abd Muttalib
Prof. Dr Nyan HL
Assoc. Prof. Tey Kim Kuan
Assoc. Prof. Ong Bee Leng
 
Asia Pacific Journal of Business, Humanities & Education
Chief Editor:
Dr. Mahiswaran Selvanathan
Deputy Chief Editor:
Assoc. Prof. Dr. Stanley Yap
Editors:
Assoc. Prof. Dr. Firdaus Low Abdullah
Dr. Mahadevan Supramaniam
Dr. Chong Wei Ying
Dr. Ramachandran Ponnan
 
 
FORCED CONVECTIVE HEAT TRANSFER ENHANCEMENT WITH PERFORATED PIN FINS SUBJECT TO AN IMPINGING FLOW
Author : Ji-Jinn Foo, Shung-Yuh Pui, Yin-Ling Lai, Swee-Boon Chin
Formats available : Flipbook (English)
You have : FREE Access
 
View Full Text Article
Read Article Online Download PDF
 
Abstract
The rapid growth in high speed multi-functional miniaturized electronics demands more stringent thermal management. The present work numerically investigates the use of staggered perforated pin fins to enhance the rate of heat transfer while subject to a vertical impinging flow. In particular, the number of horizontal perforations and the vertical and horizontal diameters of perforation on each pin are studied. Results show that the Nusselt number of pins with horizontal and vertical perforations is about 9% higher than that for the solid pins and it increases with the number of horizontal perforations. Pressure drop with perforated pins is reduced by about 10% compared with that in solid pins. Perforation produces smaller but larger number of vortices downstream of the pins which increases convective heat transfer but reduces pressure losses. However, further increasing the perforation diameters leads to a significant drop in thermal dissipation. Overall, pin fins with vertical and horizontal perforations are preferred for heat sink facing an oncoming vertical flow.
 
Authors(s) Affiliations
School of Engineering, SEGi University College, Selangor, Malaysia; Department of Mechanical Engineering, Sheffield University, Sheffield, United Kingdom.